An investigation into the conformability of wound dressings

Mike Waring, Martyn Butcher

Abstract

Aims: Flexibility and conformability are key performance characteristics in dressing design and construction, which can have an impact on product suitability in the clinical environment. This study evaluated both quantitatively and qualitatively the conformability and comfort of a variety of wound dressings (Biatain® Soft/Ag/Non-adhesive (Coloplast), Allevyn® Gentle (Smith and Nephew), Mepilex®/Mepilex® Ag, Mölnlycke Health Care) using established laboratory-based methods. These were supported by a healthy volunteer study of Mepilex Border and Allevyn Gentle Border. Results: In vivo, Mepilex was found to be more conformable and able to mould to smaller radii than the other products tested. The volunteer study supported this finding and showed that Mepilex Border dressings were more comfortable and conformable than the comparator (Allevyn Gentle Border). Statistical analysis was not possible as more than 50% of the comparator products did not remain in situ over the study period. Conclusions: Mepilex and Mepilex Border were shown to achieve higher levels of conformability and comfort in the laboratory tests and volunteer studies respectively. This is an important feature in clinical use. Conflict of interest: This manuscript was supported by an educational grant from Mölnlycke Health Care, Gothenburg, Sweden.

KEY WORDS
Conformability
Flexibility
Body contours
Anatomical radii

If dressings are not able to be flexible and conform, they may not be able to be applied to a wound/body area, or they may quickly detach, thus becoming ineffective. Dressings which best suit the needs of the wound and the patient.

The conformability of wound dressings is a property that is often overlooked, despite being important both for patient comfort and wound management. Having a chronic or even an acute wound is discomfort enough for a patient, and so the conformability of a dressing that behaves as a second skin is desirable. There are many factors that influence the way a dressing conforms to a patient, i.e.

- Level of adhesion
- Isometric elasticity of the dressing
- Dressing thickness
- Shape of wound site
- Quantity of exudate held within the dressing.

In the context of a wound dressing, ‘conformability’ means that it should follow the contours of the surface of the wound, or the surrounding skin in such a way that there is close apposition of the interface of the dressing to the tissues.

This is important for a number of reasons, namely:

- Helps to maintain a moist wound environment at the interface of the dressing and the wound (Mouës et al, 2009)
- Avoids dead space where wound fluid and bacteria can accumulate to the detriment of healing and may promote infection (Sibbald et al, 2000)
- Prevents leakage of wound exudate onto surrounding skin or into the external environment, thereby reducing the risk of maceration (Adderly, 2010)
Requires greater patient mobility, especially in areas where movement is required, e.g. over joints (Tustanowski, 2009) — flexibility being, in the authors’ opinion, one of the components of conformability.

Increases comfort factor for the patient (Wasiak et al, 2008).

However, a clear distinction needs to be drawn between those products which, by their construction, only interact with the wound interface (primary contact dressings), and those which incorporate both wound interface components and periwound adherence. The former dressings require secondary products to maintain wound interface contact and to augment their wound management properties (e.g. moisture vapour transmission, bacterial barrier and wound bed protection). The latter are designed to provide optimised dressing functionality within a one-piece construct.

Conformability prevents blisters

Dressings with aggressive adhesives, be they one-piece constructions or secondary type designs that do not exhibit viscoelastic properties and are not conformable to contours and or movement, may lead to skin blistering.

Dressings with aggressive adhesives, be they one-piece constructions or secondary type designs that do not exhibit viscoelastic properties and are not conformable to contours and or movement, may lead to skin blistering.

Assessment of dressing conformability

The difficulty in assessing the conformability of dressings during their development is making measurements that relate to body contours. This may be carried out using volunteer studies, but that, of course, is no substitute for the clinical situation. Laboratory-based in vitro studies that provide quantitative data allow direct comparisons between different dressings, without relying completely on subjective judgements on conformability, that are generally provided from volunteer studies and clinical trials.

Bowler et al (2010) have tested the wound bed conformability of dressing products within the confines of simulated wounds. However, here the testing of a primary wound care product (Aquacel Ag®, ConvaTec), retained with a thin hydrocolloid dressing, was compared to one-piece or purpose-built composite dressings (Mepilex Ag®, Mölnlycke Health Care; Allevyn® Ag Adhesive, Allevyn® Ag non-adhesive, Allevyn® Ag Gentle Border, all Smith and Nephew Healthcare). However, this was designed to investigate contact with the wound bed alone, without considering the effect of the dressing on body contour and shape. Thus, there is doubt regarding the comparability of the findings of the study relating to conformability. Little data, other than anecdotal, is generally provided by manufacturers to support statements that indicate high levels of conformability.

Few manufacturers have given laboratory evidence that provides quantitative or comparative data. In fact, the only referenced laboratory investigations of conformability of wound film dressings was undertaken by Queen et al (1987).

In this study, an in vitro assessment technique was employed, based on an inflation technique which provides a measurement of the minimum radius of curvature which a specific dressing will adopt under pressure. An inflation pressure of 40mmHg was chosen, as this had been shown to be the maximum tolerable pressure before the occurrence of tissue breakdown (Reswick and Rogers, 1975). This radius was matched to the natural radii of the body surfaces to assess conformability. In addition to the development and validation of this technique, a number of commercially available films were assessed with respect to their conformability, and the enhancement of their conformability due to viscoelastic creep behaviour.

The study presented in this paper initially examined the in vitro conformability of different wound dressings using a standard methodology of surgical materials testing laboratory (SMTL) and the method developed by Queen et al (1987), which directly linked body shape to dressing performance. Additionally, the subjective results from an in vivo volunteer study are reported, and finally some clinical observations are made.

Materials

The materials used in the study included:

- Biatain® Soft (Coloplast Ltd)
- Biatain® Ag (Coloplast Ltd)
- Biatain® Non-Adhesive (Coloplast Ltd)
- Mepilex Ag (Mölnlycke Health Care)
- Allevyn Gentle (Smith and Nephew)
- Mepilex (Mölnlycke Health Care).

Methods

In vitro conformability

The in vitro methods evaluated attempted to create the distortion that occurs in the clinical situation by holding the dressing in a fixed position and applying pressure to distort the dressing. The response to that distortion then being measured. Both methods attempt to recreate the in vivo situation by measuring the change to distortion in all directions. These two methods were selected over another method using a universal testing machine, which is only able to test the conformability in one direction at each measurement.
In addition to the in vitro methods, a separate volunteer study was undertaken at proDERM Institute for Applied Dermatological Research, Schenefeld, Hamburg, Germany. The aim of the study was to assess skin tolerance and cosmetic acceptance of two dressings, Mepilex® Border (Mölnlycke Health Care) versus Allevyn® Gentle Border (Smith and Nephew) (test products 7.5cm x 7.5cm). The data relating to conformability and comfort are presented in this article. In total, 22 female volunteers were tested, aged 42.5 +/- 15.4 years (mean, standard deviation).

The study was conducted in accordance with a study protocol and approximating the main principles of good clinical practice (GCP). On day 1, subjects came to the study site and were informed about the study, giving their written consent. A subjective and objective dermatological evaluation of the skin was carried out. The test products were applied by a trained personnel (European standard EN 13726-4 Test methods for primary wound dressings - Part 4 Conformability). Therefore, each dressing is required to be tested in one direction, and then again normal (i.e. 90° to that direction to overcome the differences in elasticity that is often observed as a result of the manufacturing process). The difficulty, however, is to interpret both measurements and to understand how they contribute to the conformability of the dressing.

Both of the methods that evaluate the dressing simultaneously in two directions can prove problematical with island dressings, depending on the size of the island and the clamped area. These two methods are ideally suited for dressings such as films, foams and hydrocolloids that do not have islands.

Surgical Materials Testing Laboratory (SMTL) method
This test involves utilising a modification of the waterproofness apparatus (British Pharmacopoeia and British Standard EN 13726-3 referenced) to identify the pressure required to distort a dressing to a set height of 20mm (Figure 1).

**Table 1**

<table>
<thead>
<tr>
<th>Conformability and comfort assessment during wear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective assessment</td>
</tr>
<tr>
<td>Very good</td>
</tr>
<tr>
<td>Good</td>
</tr>
<tr>
<td>Neither good nor bad</td>
</tr>
<tr>
<td>Bad</td>
</tr>
<tr>
<td>Very bad</td>
</tr>
</tbody>
</table>

Queen method
This methodology was developed by Queen et al (1987) and, although the dressing is pressurised in a similar manner to the SMTL method, in this case a fixed pressure is applied (40mm Hg) and the height of the distorted dressing is measured (Figure 2). This has a distinct advantage over the SMTL method in that as the dressing is pressurised, it creates a shape, the radius of which can be calculated and then directly related to body curvature.

The following calculation is used to convert the height (x) in cm to radius of curvature, where

\[ R = \frac{D^2}{8x} + \frac{x}{2} \]

and

\[ D = \text{diameter of the sample holder in cm} \]

**Table 2**

Pressure measurements using SMTL conformability method

<table>
<thead>
<tr>
<th>Dressing</th>
<th>Pressure/mmHg (n=5 (S.D.))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allevyn Gentle</td>
<td>150 (3.5)</td>
</tr>
<tr>
<td>Mepilex</td>
<td>88 (4.2)</td>
</tr>
</tbody>
</table>
technician to the inner forearm, according to a randomisation scheme. While this was a flat area and thus not a challenge to conformability, the area in question was constantly moved and distorted during wear time.

On day 8, subjects came to the study site. Before removal of the dressings the technician estimated the percentage of the dressing still adhered to the skin, adherence being an important part of conformability. After removing the dressing, a subjective and objective evaluation of the skin was performed. The technician assessed the area covered with the adhesive and the dressing itself, the conformation and comfort during the application time. The assessments were scored from values of 2 to -2 according to Table 1.

Results

Surgical Materials Testing Laboratory (SMTL) method

The results for the two dressings tested using the SMTL method are shown in Table 2. These show that Allevyn Gentle requires higher pressure to distort to a height of 20 mm than the Mepilex dressing and, as such, is less conformable.

Queen method

Table 3 shows the heights measured for each of the dressings tested and the value when converted to radius of curvature. The radius of curvature is then able to be compared to the natural radii of body surfaces shown in Table 4. These results, from the in vitro methodology, show that Allevyn Gentle distort to the greatest height and will conform to the smallest radius of all the dressings tested, followed by Biatain Non-adhesive, Mepilex Ag, Biatain Soft, Allevyn Gentle, and finally Biatain silver.

Volunteer study

The results presented are for comparison with the in vitro data, although in this instance Mepilex Border was used instead of Mepilex. The results consistently show that the Mepilex Border dressings were more conformable and comfortable than the Allevyn Gentle Border (Figures 5 and 6). During this study, approximately 50% of the Allevyn Gentle Border dressings were not retained in place for the period of the study (Data on file – proDERM Study Report 09.0282-11). Due to this lack of adhesion and the subsequent small sample size, a statistical analysis of the data was not undertaken.

Discussion

Modern wound dressings should follow a number of criteria. One, which is frequently quoted and often considered during clinical evaluations, is that of conformability (Thomas, 2003; Young, 2007; Vowden, 2004; Stephen-Haynes, 2011). Subjective opinions on conformability achieved from clinical studies or volunteer trials can make it difficult to spot subtle differences between dressings. However, in vitro laboratory methods allow definite values to be given to

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Height and radius of curvature using Queen method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing</td>
<td>Height (mm), n=5 (S.D.)</td>
</tr>
<tr>
<td>Biatain Soft</td>
<td>20.25 (0.37)</td>
</tr>
<tr>
<td>Biatain Ag</td>
<td>14.66 (0.84)</td>
</tr>
<tr>
<td>Biatain Non-adhesive</td>
<td>21.59 (0.38)</td>
</tr>
<tr>
<td>Allevyn Gentle</td>
<td>15.14 (0.48)</td>
</tr>
<tr>
<td>Mepilex Ag</td>
<td>20.70 (0.46)</td>
</tr>
<tr>
<td>Mepilex</td>
<td>21.95 (1.23)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Natural radii of body surfaces (cm) from Queen et al, 1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buttocks</td>
<td>14.5</td>
</tr>
<tr>
<td>Head</td>
<td>10.2</td>
</tr>
<tr>
<td>Shoulder</td>
<td>7.8</td>
</tr>
<tr>
<td>Knee</td>
<td>5.7</td>
</tr>
<tr>
<td>Heel</td>
<td>5.0</td>
</tr>
<tr>
<td>Chin</td>
<td>4.1</td>
</tr>
<tr>
<td>Elbow</td>
<td>3.9</td>
</tr>
<tr>
<td>Knuckle</td>
<td>1.5</td>
</tr>
<tr>
<td>Finger joint</td>
<td>1.0</td>
</tr>
</tbody>
</table>
The first method is fairly simplistic in that it measures the pressure that is required to inflate a dressing to a fixed height: the lower the pressure required, the greater the flexibility/conformability of the dressing. Two dressings were evaluated, Allevyn Gentle Border and Mepilex Border and the results showed greater conformity for the Mepilex dressing (Table 2), with the t-test giving $p=8.2\times 10^{-9}$.

The second method developed by Queen et al (1987) is a more complex laboratory test that allows measurement of the conformability of the dressing to be equated with experimentally derived radii of curvatures of the body. This provides a quantitative measure that allows comparisons of dressings, as well as identifying on which body surfaces they can be used, for example, on developable surfaces of fixed geometry, i.e. curvature of the torso or non-developable surfaces such as joints.

Table 3 and Figures 3 and 4 show the results obtained using this technique. The radii of the concentric circles relate to the surfaces on which the dressings are conformable, from outer (less complex) to inner (more complex and requiring greater conformability). Hence, outer to inner concentric circle — buttock, head, shoulder, knee, heel, chin, elbow, knuckle and finger relate to radii that might be expected on these anatomical positions respectively.

Of the six dressings studied with this method, Mepilex shows the most conformability with Biatain Ag the least. It can be seen that both Mepilex Ag and Biatain silver have lower conformability properties than their non-silver containing equivalents. This may be due to the processing of the silver dressings affecting the physical properties. In the case of Biatain Ag, the difference is significant ($p<0.01$). However, it is not significant for Mepilex Ag ($p=0.0524$) which can still conform to small anatomical radii such as the chin and possibly the elbow, and so would be useful when the antibacterial properties of a silver-containing dressing are required.

From a clinical perspective, more conformable dressings are more versatile, in that they can be applied to varied body locations that would generally be challenging to dress. It is also likely that these dressings will be practical.

dressing conformability, providing more accurate dressing selection when conformability is important.

In this laboratory study, two methods were used to evaluate the conformability of dressings commonly used in the treatment of a variety of different types of wounds.

The first method is fairly simplistic in that it measures the pressure that is required to inflate a dressing to a fixed height: the lower the pressure required, the greater the flexibility/conformability of the dressing. Two dressings were evaluated, Allevyn Gentle Border and Mepilex Border and the results showed greater conformity for the Mepilex dressing (Table 2), with the t-test giving $p=8.2\times 10^{-9}$.

The second method developed by Queen et al (1987) is a more complex laboratory test that allows measurement of the conformability of the dressing to be equated with experimentally derived radii of curvatures of the body. This provides a quantitative measure that allows comparisons of dressings, as well as identifying on which body surfaces they can be used, for example, on developable surfaces of fixed geometry, i.e. curvature of the torso or non-developable surfaces such as joints.

Table 3 and Figures 3 and 4 show the results obtained using this technique. The radii of the concentric circles relate to the surfaces on which the dressings are conformable, from outer (less complex) to inner (more complex and requiring greater conformability). Hence, outer to inner concentric circle — buttock, head, shoulder, knee, heel, chin, elbow, knuckle and finger relate to radii that might be expected on these anatomical positions respectively.

Of the six dressings studied with this method, Mepilex shows the most conformability with Biatain Ag the least. It can be seen that both Mepilex Ag and Biatain silver have lower conformability properties than their non-silver containing equivalents. This may be due to the processing of the silver dressings affecting the physical properties. In the case of Biatain Ag, the difference is significant ($p<0.01$). However, it is not significant for Mepilex Ag ($p=0.0524$) which can still conform to small anatomical radii such as the chin and possibly the elbow, and so would be useful when the antibacterial properties of a silver-containing dressing are required.

From a clinical perspective, more conformable dressings are more versatile, in that they can be applied to varied body locations that would generally be challenging to dress. It is also likely that these dressings will be
other investigators have also shown in the clinical environment that Mepilex is conformable to wounds that are awkward to dress. For example, leg amputations, which provide a large, generally irregular but convex stump area (Weaver and Crawford, 2007), diabetic wounds (Young, 2002), venous leg ulcers and pressure ulcers (Dubois, 2004).

An example of the use of Mepilex in the treatment of leg amputation wounds can be seen in Figure 7. The dressing conformed well to the wounds (Figure 7 C and D) and assisted in the healing progression.

Mepilex Ag, the antibacterial silver-containing dressing, also shows conformability in the treatment of diabetic wounds and foot ulcers, as shown in Figure 8.

It is interesting to note the differences between Mepilex and Allevyn Gentle with the SMTL conformability method compared to the Queen method; although further dressings need to be tested using the SMTL method to see if it is more discriminatory. The clear advantage of the Queen method is the ability to relate the measured conformability of the dressing to a body shape.

Comfort of the dressing is important in that pain and discomfort reduces patient compliance (Douglas, 2006; Briggs, 2005), impacting upon the effectiveness of the dressing. Both conformability and flexibility of a dressing contribute to comfort (Aindown and Butcher, 2005). This is especially important if dressings are in situ over a joint or area of the body where movement occurs. A number of studies have identified comfort as being a key component of Mepilex dressings (Young, 2002; White, 2005; Meaume, 2009).

It is important to stress that the results of laboratory studies should not generally be assumed to accurately reflect outcomes in clinical settings. However, this particular study employed a validated in vitro method...
that correlates curvature with areas of
the body. The results presented here
could, therefore, be considered more
clinically relevant in terms of overall
conformability than the findings of
previously reported work which did
not adopt the same methodology
(Bowler et al, 2010).

Volunteer study

The results presented are for
comparison with the in vitro data,
although in this instance Mepilex
Border was used instead of Mepilex.
The results consistently show that
the Mepilex dressings were more
conformable and comfortable than the
Allevyn Gentle Border dressing
(Figures 5 and 6). During this study,
50% of the Allevyn Gentle Border
dressings were not retained in place
for the period of the study (Data on
file – proDERM Study Report No.
SP5146-V01). Due to this lack of
adhesion and the subsequent small
sample size, a statistical analysis of
the data was not undertaken.

Conclusion

The human body with its irregular
contours and shapes can be
challenging when applying dressings
that need to be in contact with the
wound and the skin, but are
situated in awkward places. Dressing
conformability and flexibility will aid
in maintaining contact and keeping the
dressing in place, thereby overcoming
this clinical challenge.

This study provides quantitative
measures of conformability of
dressings that are commonly used in
treating a variety of wounds, and helps
to correlate the dressings showing
those best able to deal with different
anatomical topographical features
such as bony prominences and joint
curvatures. Overall, Mepilex dressings
were seen to have higher levels of
conformability and comfort than the
other dressings tested.

References

Aindown D, Butcher M (2005) Films
or fabrics: is it time to re-appraise
postoperative dressings? Br J Nurs
14(19): S15–S20

Bowler P, Jones S, Towers V, Booth R,
conformability and silver-containing
wound dressings. Wounds UK 6(2):
14–20

Briggs SL (2003) Leg ulcer management:
how addressing a patients’ pain can
improve concordance. Prof Nurse
20(6): 39–41

ulcers and its impact on quality of life.
In: White R, Harding K, eds. Trauma
and Pain in Wound Care. Wounds UK,
Aberdeen

Dubois L (2004) Chronic ulcer of the
left leg and healing. Poster presentation
at the 2nd Congress of the World Union
of Wound Healing Societies, Paris, France

Postoperative wound blistering: is there
a link with dressing usage? J Wound Care
11(7): 271–3

Meaume S (2009) Résultats France d’une
enquête international sur la douleur
au retrait des pansements/Apport des
pansements hydrocellulires silicones
issus de la technologie Safetac®

and treatment in wound care. Wound
Essentials 3: 125–7

Mouës CM, Heule F, Legerstee R, Hovius
SE (2009) Five millennia of wound care
products — what is new? A literature
review. Ostomy Wound Manage
55(3):16–8, 20, 22 passim

Queen D, Evans JH, Gaylor JDS,
Courtney JM, Reid WH (1987) An in-
vitro assessment of wound dressing
conformability. Biomaterials 8: 372–6

Reswick JE, Rogers JB (1973) Bedside
biomechanics. (Eds Kennedi RM,
Cowden JM, Scale JT) MacMillan,
London: 308

Sibbald G, Williamson D, Orsted H,
Campbell K, Krasner D, Sibbald D
(2000) Preparing the wound bed —
debridement, bacterial balance, and
moisture balance. Ostomy Wound
Manage 46(11): 14–22, 24–8, 30–5; quiz
36–7

exudate and the key requirements of
absorbent dressings. Br J Community
Nurs 16(3 Suppl): 44–9

World Wide Wounds. Available online
at: www.worldwidewounds.com/2003/
january/thomas/ataumatic-dressings.
html

Key points

The human body consists of
irregular contours and shapes that
sometimes makes application of
dressings to wounds difficult.

Dressings need to maintain
intimate contact with the
body and the wound in
order that they are effective.

Conformability and flexibility
are key components of the
dressing that enable intimate
contact with surrounding
skin and wound tissue.

Quantitative measures of
conformability are useful in
identifying these characteristics in
dressings that can be correlated with
clinical requirements.

Tustanowski J (2009) Effect of dressing
choice on outcomes after hip and knee
arthroplasty: a literature review. J Wound
Care 18(11): 449–50, 452, 454, passim

Vowden K (2004) Wound management:
The considerations involved in dressing
selection. Nurse Prescribing
2(4): 152–62

Wasiak J, Cleland H, Campbell F (2008)
Dressings for superficial and partial
thickness burns. Cochrane Database Syst

Weaver G, Crawford K (2007) The use of
Mepilex on dehisced amputation wounds.
Wounds UK 1(3): 70–4

White RJ (2005) Evidence for atraumatic
soft silicone wound dressing use.
Wounds UK 1(3): 104–9

Young M (2002) Management of the
diabetic foot: a guide to the assessment
and management of diabetic foot ulcers.
Diabetic Foot 3(3 Suppl): S1–S7

Young S (2007) Does Allevyn foam’s
management system improve wound
healing? Br J Community Nurs
12(6 Suppl): S31–S34